Importigat Vota : 1 - On oxymalisting your group or a magalized that

CBCS Scheme

USN							15AE42
	<u> </u>	<u> </u>			<u> </u>		

Fourth Semester B.E. Degree Examination, Dec.2017/Jan.2018 Aerodynamics – I

Time: 3 hrs. Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

- a. Explain briefly Mach number regimes with relevant sketches of flow over an airfoil.

 (08 Marks)
 - b. Consider the velocity field given by $u = \frac{y}{(x^2 + y^2)}$ and $v = \frac{-x}{(x^2 + y^2)}$. Calculate the equation of the stream line passing through the point (0, 5) and also calculate the vorticity.

 (08 Marks)

OR

- 2 a. Define following with relevant expressions:
 - (i) Path line (ii) Stream line (iii) Angular velocity (iv) Circulation (08 Marks)
 - b. Derive the integral form of momentum equation, according to control volume approach.

 (08 Marks)

Module-2

3 a. Explain airfoil-section nomenclature and wing planform geometry with a neat sketch.

(08 Marks)

b. Obtain the expression for N' and A' in terms of τ , p and θ . Deduce C_n and C_a . (08 Marks)

OR

4 a. Explain briefly the center of pressure and aerodynamic center.

(08 Marks)

b. Consider the NACA 23012 airfoil. At $\alpha = 4^{\circ}$, $C_1 = 0.55$ and $Cm_{C/4} = -0.005$. The zero-lift angle of attack is -1.1° . Also, at $\alpha = -4^{\circ}$, $Cm_{C/4} = -0.0125$. Calculate the location of the aerodynamic center for the NACA 23012 airfoil. (08 Marks)

Module-3

- 5 a. Obtain an expression for the following for a lifting flow over cylinder:
 - (i) Stream function (ψ)
- (ii) Location of stagnation points.
- (iii) Pressure co-efficient.

(08 Marks)

b. Consider the lifting flow over a circular cylinder with a diameter of 0.5 m. The freestream velocity is 25 m/s and the maximum velocity on the surface of the cylinder is 75 m/s. The freestream conditions are those for a standard altitude of 3 km. Calculate the lift per unit span on the cylinder. (Assume $\rho = 0.90926 \text{ kg/m}^3$ at 3 km altitude, maximum velocity occurs at when $\theta = 90^\circ$) (08 Marks)

OR

- 6 a. Write short notes on the following:
 - (i) Kutta condition (ii)
 - (ii) Kelvin's circulation theorem.

(08 Marks)

b. Using classical thin airfoil theory, obtain the expression $C_1 = 2\pi\alpha$ for a symmetric airfoil. (08 Marks)

Module-4

- 7 a. Obtain the expression for the velocity, induced by infinite and semi-infinite vortex element using the Biot-Savart law. (08 Marks)
 - b. Explain Downwash and induced drag.

(08 Marks)

OR

8 a. The circulation distribution over a finite wing is of elliptic form, $\Gamma(y) = \Gamma_0 \sqrt{1 - \left(\frac{2y}{b}\right)^2}$,

where $\frac{b}{2}$ is the semi span of wing. Obtain the closed form of expression, the induced angle of attack and induced drag co-efficient. (08 Marks)

b. Consider a finite wing with an aspect ratio of 8 and taper ratio of 0.8. The airfoil section is thin and symmetric. Calculate the lift and induced drag co-efficient for the wing when it is at an angle of attack of 5°. Assume that $\delta = \tau = 0.055$.

Module-5

- 9 a. Briefly explain simplified horse-shoe vortex model and formation flight. (08 Marks)
 - b. What are high lift devices? List them. Explain their effects on aerodynamic characteristic.

 (08 Marks)

OR

- 10 a. What is swept wing? Bring out the aerodynamic characteristics of swept wing, with relevant graphs and sketches. (08 Marks)
 - b. Explain (i) Drag-Divergence Mach number. (ii) Transonic area rule. (08 Marks)

* * * *